1、已知三角形三顶点坐标,设向量AB=(x1,y1),向量AC=(x2,y2),则
2、已知三角形两边为a,b,且两边夹角为C,则三角形面积为两边之积乘以夹角的正弦值,即S=(absinC)/2。
3、设三角形三边分别为a,b,c,内切圆半径为r,则三角形面积S=(a+b+c)r/2。
4、设三角形三边分别为a,b,c,外接圆半径为R,则三角形面积为abc/4R。
5、在直角三角形ABC中(AB垂直于BC),三角形面积等于两直角边乘积的一半,即:S=AB×BC/2。
6、(海伦公式)设三角形三边分别为a,b,c,三角形的面积则为:其中,p为三角形半周长,即p=(a+b+c)/2。